
Technische Universität Berlin

Usability Evaluation of Acceptance Testing
Frameworks

Bachelorarbeit
am Fachgebiet Software Engineering of Embedded Systems (SEES)

Prof. Dr. Sabine Glesner
Fakultät IV Elektrotechnik und Informatik

Technische Universität Berlin

vorgelegt von
Anton Bardishevs

Gutachter: Prof. Dr. Sabine Glesner
Prof. Dr.-Ing. Sebastian Möller

Betreuer: Stefan Sydow, M.Sc.

Anton Bardishevs
Matrikelnummer: REDACTED
CONTACT INFORMATION REMOVED

Contents

Contents I

Erklärung der Urheberschaft III

List of Figures V

List of Tables VI

1 Introduction 2

2 Background 5
2.1 Terms and definitions . 5
2.2 IEEE 29119-2 . 6
2.3 Quality Engineering . 6
2.4 Summary . 8

3 Related work 9
3.1 Brief history of unit testing . 9
3.2 Behavior Driven Development (BDD) 11
3.3 Robot Framework . 13
3.4 Usability research . 13
3.5 Summary . 14

4 Methods 15
4.1 Preconditions for a survey . 15
4.2 Survey . 16
4.3 Sample system . 17
4.4 Test implementations . 17

4.4.1 Supporting code . 19
4.4.2 First test specification . 19

I

CONTENTS II

4.4.3 Second test specification . 19
4.4.4 Third test specification . 21
4.4.5 Overview of specifications . 21

4.5 Preparation . 21
4.6 Evaluation of answers . 22
4.7 Summary . 24

5 Conducting an experiment 25
5.1 First survey . 25
5.2 Second survey . 27
5.3 Summary . 29

6 Evaluation 30
6.1 JUnit . 30
6.2 Cucumber . 31
6.3 Robot Framework . 32
6.4 Feedback . 33
6.5 Summary . 36

7 Future work 38

8 Conclusion 40

Bibliography I

Appendices III
A Choice of literature . IV
B Source Code . IV
C Information for participants X

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus
fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen
Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Riga, 10. August 2020 Anton Bardisevs (elektronisch)

III

Abbreviations

BDD Behaviour-Driver Development
CLI Command Line Interface
IEEE Institute of Electrical and Electronics Engineers
OOPSLA Object-Oriented Programming, Systems, Languages & Applications conference
UI User Interface
TDD Test-Driver Development
QA Quality Assurance
HQ Headquarters

IV

List of Figures

2.1 Test Design and Implementation Process
Source: ISO/IEC/IEEE 29119-2:2013 ©2013, IEEE 7

4.1 Survey service state diagram for participant 23

5.1 First survey: one team; Results for (C)ucumber, (J)Unit, (R)obot Frame-
work, for questions 1-8 . 26

5.2 Second survey. Results for JUnit . 28
5.3 Second survey. Results for Cucumber 28
5.4 Second survey. Results for Robot Framework 29

V

List of Tables

4.1 Survey questions and expected answers 18

5.1 Different understandings of test being re-runnable in question 3 29

6.1 Participants satisfaction . 35

VI

Zusammenfassung

In diese Arbeit werden wir die Verwendbarkeit der populär Frameworks für Abnahme-
tests auswerten. Wir werden eine Umfrage in eine große Unternehmensorganisation
durchführen, um die Verständlichbarkeit des Tests miteinander zu verglichen.

Dafür werden wir einige Abnahmetesten mithilfe von allem drei recherchierte
Frameworks: JUnit, Cucumber und Robot Framework implementieren. Danach werden
wir diese Implementationen zwischen den Umfrageteilnehmer verteilen. Das Ziel der
Arbeit ist es zu verglichen, ob es die Unterschiede bei diesen Frameworks zwischen
Verständlichkeit und Benutzbarkeit für den Benutzer sind.

Als Ergebnis sollen wir die Vor- und Nachteile der moderne Test-Framework verste-
hen können. Wir werden eher Schlussfolgern können, dass einer der Frameworks mehr
verwendbar als die andere sind, oder dass die Frameworks eher gleich sind.

1

Chapter 1

Introduction

Acceptance tests in software development are a form of tests aimed at verifying that
the tested system is fulfilling specifications. In contrast with unit tests, requirements
for acceptance tests come from people with a deep understanding of the application’s
domain logic - e.g., business logic or possible legal nuances and issues.

Automation of acceptance tests, however, creates the following problem. De-
velopers working on test implementation are not expected to understand the domain
they are working in full. In contrast, people with domain knowledge typically lack
programming experience to evaluate the quality of implemented tests. With changes
to the requirements over time, this communication gap may result in acceptance tests
becoming an obsolete black box that no one in an organization can fully understand.

Martin [2008] provides an example of a software company that went out of business
because of bad code. Management rushed developers and demanded constant changes
and bug fixes, and this went on until software developers could no longer maintain
their product. Later in the book, Martin postulates, that the code must always be
rigorous, accurate, formal, and detailed - otherwise, owning a "bad" code costs too
high. The same requirements should apply for testing code as well - acceptance tests
must be maintainable by software developers while staying clear and understandable
for stakeholders or end-users.

This thesis aims to compare existing solutions and practices to determine which
approach is best suited for implementing large sets of acceptance tests in domain
logic-heavy systems.

2

3

An ideal solution would meet the following criteria: allow and encourage developers
to write clean and understandable code; ensure that testing code is manageable for
a long time; ensure that implemented tests are understandable for people without
technical knowledge.

In the real world, achieving such feats proves to be a challenge. To make testing
code easy to read by end-users, developers have to hide details underneath several
levels of abstractions. However, the more abstract code becomes, the harder it gets to
find workarounds in corner and exception cases.

There are several ways to implement acceptance tests that this study author has met
in practice. Acceptance tests can be implemented like regular unit tests, using all tools
that programming language/unit testing framework provides. Alternatively, developers
could define a custom domain-specific language (DSL) and use it to implement tests so
that users with domain knowledge can easily understand.

This work’s scope should be limited to frameworks and methods, used internally
by Swedbank across various teams. A long history of different teams working inde-
pendently from each other resulted in various solutions for similar problems. Various
development teams wrote their acceptance tests as regular unit tests with Java and
JUnit [JUnit, 2018]; with human-readable DSL defined with Cucumber Framework and
using glue code implemented in Java [Cucumber, 2019]; by using Robot Frameworks
- an already defined DSL which combines human-readable language and pseudocode
constructs [Robot Framework Foundation, 2019].

Additionally, this work’s scope will be limited to the following question: is there
a difference in how usable testing code can be, depending on the test framework? In
other words: can we produce a clean and easily readable code using one of those
frameworks? Do custom DSL of either Cucumber or Robot Framework make more
sense than JUnit code for a stakeholder with no programming experience, or if there is
no difference?

We will conduct a survey inside one large organization - namely, Swedbank, to find
out how well the tests could be understood.

4

We will implement several acceptance tests using all three frameworks and hand
those out to the survey participants. The goal is to compare how well were those
tests understood and interpreted, and if there are noticeable differences between
frameworks. The survey will be for everyone - from test automation engineers and
software developers to team and product managers and domain experts.

In the conclusion of this thesis, it should be possible to understand the differences
between modern testing frameworks, their advantages and disadvantages. The results
will need careful assessment: it might be the case that the results will show the superior-
ity of one method above all else; it might also be the case that end-user results will differ
from software engineers. In the latter case, this work’s results could either improve one
of the frameworks to be more end user-oriented or to define development practices that
would improve code maintainability.

Chapter 2

Background

In this chapter, we will go over the necessary background for doing this work, such as:

• Common terminology

• Applicable standards

• Brief description of psychophysics

2.1 Terms and definitions

For the duration of this work, the terms and definitions given in ISO/IEC/IEEE 24765
will apply.

dynamic testing testing that requires the execution of the program code

feature functional characteristic of a system of interest that end-users and other stake-
holders can understand

feature set a logical subset of the test item(s) that could be treated independently of
other feature sets in the subsequent test design activities

test case 1. a set of test inputs, execution conditions, and expected results developed
for a particular objective, such as to exercise a particular program path or to verify
compliance with a specific requirement;
2. documentation specifying inputs, predicted results, and a set of execution conditions
for a test item;

5

2.2 IEEE 29119-2 6

3. set of test case preconditions, inputs (including actions, where applicable), and
expected results, developed to drive the execution of a test item to meet test objectives,
including correct implementation, error identification, checking quality, and other
valued information

Note 1 to entry: A test case is the lowest level of test input (i.e., test cases are not
made up of test cases) for the test subprocess for which it is intended

test case specification 1. document specifying inputs, predicted results, and a set of
execution conditions for a test item;
2. documentation of a set of one or more test cases

test design specification a document specifying the features to be tested and their
corresponding test conditions

test driver software module used to invoke a module under test and, often, provide
test inputs, control, and monitor execution, and report test results

Note for the entry: for the duration of this work, we may interchange "test driver"
and "test framework" terms as they seem to be synonymical for this study.

2.2 IEEE 29119-2

We refer a section 8 of Software testing - Test processes standard for processes required
for implementing acceptance tests. In the scope of this work, we focus on TD4 and
TD6 from figure 2.1, and comparing different approaches for deriving test cases and
test procedures. We may assume that we are dealing with provided feature sets, but
stakeholders have no preferences over the framework we use, so choosing a technology
is up to us.

2.3 Quality Engineering

The basis of working with human respondents was researched by [Möller, 2010, chapter
2]. While working with respondents, we assume that a physical event (in our case -
observing of test implementation) affects the answer of a respondent. However, we do

2.3 Quality Engineering 7

Figure 2.1: Test Design and Implementation Process
Source: ISO/IEC/IEEE 29119-2:2013 ©2013, IEEE

not know what the respondent really thought to himself.

A correct answer might be given by a wrong reason, or just be a lucky guess
(especially if a survey has single or multiple choice questions). An incorrect answer
might be caused by a misunderstanding of a question itself, not the test implementation.

Furthermore, we must consider the background of a participant. It is likely that
someone who works with code routinely - e.g., software developer or a test automation
engineer - will be able to analyze test implementation faster and more accurately than
an end-user or a stakeholder. A test specification and test implementations, mimicking
the style of internal bank code standards, could also give an advantage for those, that
worked in a bank for a longer period of time.

2.4 Summary 8

2.4 Summary

In this chapter, we’ve listed the terms and definitions that are going to be used during
this work. We overviewed the applicable IEEE standards for software testing and doc-
umentation and reviewed the general challenges of working with human respondents
from the area of psychophysics.

Chapter 3

Related work

In this chapter, we will review the state of automated testing and go into a history of
development and testing practices that lead us to the current moment.

3.1 Brief history of unit testing

JUnit is a unit testing framework that revolutionalized the software development field
by introducing new development processes and practices.

JUnit history begins in 1994 when Kent Beck, working as a consultant, prepared
a presentation to introduce a concept of automated tests for a software development
company. According to Beck [2004], he wanted to present a concrete example. He
wrote a tiny testing framework, consisting of three classes and twelve methods, using
the Smalltalk programming language. Even though Beck did not think much of the
usefulness of a project initially, its importance was confirmed later on by other senior
developers. The project was accepted both in a company he made it for and in the
Smalltalk community.

Three years later, Beck went on an OOPSLA conference together with his friend
Erich Gamma. Beck wanted to learn Java, while Gamma was curious about his friends’
testing framework, so together, they decided to port that framework to Java. They
worked in a process that later got named Test-Driven Development (TDD): at first,
they wrote tests (using a framework that did not even exist yet!), and only then they
implemented the framework itself. Framework got its first fans before the conference
even ended, and so upon returning home, friends agreed on a name JUnit and prepared

9

3.1 Brief history of unit testing 10

their first public release.

Interestingly enough, in their early releases, JUnit developers also spent some time
on several features that we could now evaluate as unnecessary. Among those features,
we can name such as standalone GUI for test execution and on-the-fly class reloading
- they were removed in following major releases, as JUnit got better integration with
IDEs and build systems. Dependency Finder [2020]

JUnit also was ported to at least 30 other programming languages [Beck, 2002] under
a common family name xUnit. According to Beck [2004], this shows that the problems
solved by JUnit are universal. At the time of writing this work, there are three publicly
accessible major versions of JUnit - 3, 4, and 5, where JUnit 3 is outdated, and JUnit
4 is in the process of replacement by JUnit 5. Throughout all versions [Beck, 2004,
Tahchiev et al., 2010] and releases JUnit team followed the same goal of simplifying
tests, and defines three discrete goals for the framework:

• The framework must help with writing useful tests

• The framework must help with the creation of tests that retain their value over
time

• The framework must help with lowering of the costs of writing tests by reusing
code

In retrospect, we can see that the xUnit family development family impacted
software development so much because it introduced and standardized a new approach
for software development. Before xUnit, a software developer would only write
production-ready code and let manual testers worry about testing. Before xUnit,
developers would only test their new functionality with small bits of throwaway code,
that they would themselves delete once they made sure that the code is working. Even
the idea of writing automated tests instead of focusing on a production code could
seem like a counter-productive waste of time for many. Upon trying a new framework,
however, even the most experienced developers realized that it was quite the opposite:
having automated tests in place allowed them to find bugs sooner, modify and deliver
new code faster, write more structured code, and save money for the business by not
relying on expensive external consultants if something broke down.

3.2 Behavior Driven Development (BDD) 11

A logical next step from automating tests was formalizing the rules of Test Driven
Development. As per Martin [2008], "do not write production code until you have
written a failing unit test; do not write more of a unit tests that is sufficient to fail (not
compiling is failing); and do not write more production code that is sufficient to pass the
currently failing test." This development process should allow writing clean, testable,
and covered by test code from the very beginning, instead of trying to come up with a
way to refactor and test new code later.

A recent data-mining study [Stefan et al., 2017, p. 405] revealed that JUnit is used
in approx. 30% of all open-sourced Java projects. Another study on test framework
usability by [Brunet et al., 2011, p. 149] demonstrates, that in-built in JUnit assertive
decorations are preferred for software developers and are intuitively understandable.

3.2 Behavior Driven Development (BDD)

Over time, many developers began to notice problems with the TDD approach. While
TDD describes clearly how new code should be written, it becomes less clear what to
do when requirements change and old tests start failing. This problem has inspired
many software engineers worldwide to think and try to solve or work around those
issues. Their contribution has led sequentially to the formularization of a concept for
BDD.

At first, Chris Stevenson created a simple documentation utility TestDox [Steven-
son, 2003], which printed test case names from JUnit as a sentence by splitting words:
method "testFindsCustomerById()" would turn into "finds customer by id." Just having
this documentation utility encouraged developers to write test methods as real sentences
in a language of a business domain, which, in turn, allowed domain experts, analysts,
and testers to understand those methods more easily.

North [2006] categorized test failures in three categories: a test may fail because
the developer introduced a bug, a test may fail because some parts of functionality were
moved elsewhere, or a test could fail because the tested behavior is no longer correct.
A test either needs to be fixed, moved, and probably changed, or removed. By that
time, there already was a convention to start test method names with the word "should."
North observes that this convention implicitly helps developers challenge the premise
of a test: "Should it really do that now?", making deletion of obsolete tests easier.

3.2 Behavior Driven Development (BDD) 12

With his next steps, North reasoned, that the word "test" itself is confusing, and
suggested to replace it with a more useful word "behavior". That way, it solved the
naming problem - developers could describe the behavior they are interested in for a
test name. A single sentence can not fit the too large description, which naturally limits
a test’s scope.

At about the same time, Eric Evans published a book on Domain-Driven Design,
where he addressed problems with a common language and sharing knowledge between
colleagues. As per Evans [2004] "A project faces serious problems when its language
is fractured. Domain experts use their jargon while technical team members have their
language tuned for discussing the domain in terms of design. . . Across this linguistic
divide, the domain experts vaguely describe what they want. Developers, struggling to
understand a domain new to them, vaguely understand."

This book has made a significant impact on both Java and Ruby developer com-
munities. To discover and facilitate a ubiquitous language - a universal language that
would be understood both by domain experts and technical team members, for Java was
created a JBehave framework and for Ruby - RSpec testing. While JBehave drafted
the first approach for imposing a "Given - When - Then" structure for test specification
(by extending Given, When and Then Java classes), RSpec allowed developers to
describe expected behavior with plain strings. Later on, JBehave got ported to Ruby (as
RBehave) and became part of an RSpec project. Experiments for combining those two
approaches in a "story-based description" led to the creation of a Cucumber framework.

In Cucumber, the system behavior is specified in a set of feature files describing a
user story and written in Gherkin language. Cucumber runner executes those feature
files by matching the human-readable text against annotated code. Feature files are
intended to be the definitive source of truth as to what the system does. With this
approach, development teams can save time by keeping requirements, documents, tests,
and code all in sync, and where every team member can contribute towards improving
system correctness [Hellesoy et al., 2015].

A paper by Oliveira Bertholdo et al. [2011] also illustrates that mapping of goals
(like usability goals) into a development process by using a BDD framework plays an
important role in agile development, and strengthens the understanding of a typical user,
their needs, and the context of their use.

3.3 Robot Framework 13

3.3 Robot Framework

Independently from Java and Ruby communities, Klärck [2006] worked on problems
of test automation for his master thesis. While xUnit family of unit testing frameworks
was mentioned, his work was based on academic research and scientific standards
and described steps needed for creating a data- and keyword-driven test automation
framework. The framework’s high-level requirements were: full automation of test
execution, ease of use, and high maintainability. This framework would also explore
data-driven development: a test development process, where input data is separated
and kept apart from the code in tabular format. The next logical step from data-driven
testing, as pointed by Dorothy Graham [1999], is keyword-driven testing. Similarly
to Cucumber feature files, test specifications could also be written in a separate file,
but this framework format for such files could be any tabular one, like CSV, TSV,
or even Excel file - allowing users to modify specifications without any special software.

The thesis confirmed the feasibility of implementing every single concept and
functionality and suggested using high-level scripting languages such as Perl, Python,
or Ruby. The first version of a framework was implemented the same year in Python
within Nokia Siemens Networks, and per Klärck [2020], PyPi [2008], the project was
open-sourced under the name of Robot Framework in 2008.

3.4 Usability research

The usability of development practices and processed has been researched in various
papers. [Stefan et al., 2017] researched the usability of a custom JUnit-based test driver
by observing how experienced programmers would implement given test design specifi-
cations. They used a Think Aloud Protocol as described by Lewis [1982] - participants
were invited to keep up the running commentary on their actions, to see if there are any
questions or confusion. The framework was evaluated against cognitive dimensions de-
fined by Clarke [2006] such as "Abstraction level" and "Learning style," and the results
of this survey led to improvements to the API.

3.5 Summary 14

3.5 Summary

In this chapter, we reviewed the current state and history of all three frameworks that
we will focus on in this work.

Each framework had its historical context for creation and was written to address
some challenges in software development.

JUnit was one of the first modern unit testing tools and has become a de-facto
standard, known to most Java developers.

Cucumber framework was born out of various development communities’ efforts
towards bringing domain and technical experts together by writing specifications
in a common language that both developers and "business people" can understand.
Robot Framework is a practical implementation of academic research on Data- and
Keyword-driven development concepts that found its place in regressions and UI tests.

In the following chapters, we will introduce methods for comparing those frame-
works against each other and survey to determine how well those frameworks can help
with quality assurance in their current state.

Chapter 4

Methods

In this chapter, we will go over the methods we will use for conducting a survey. Till
the end of the chapter, we should answer the following questions:

• How are we going to conduct our study?

• What questions are we going to ask the participants?

• What are we going to show them?

• How are we going to evaluate answers?

4.1 Preconditions for a survey

We are going to conduct a survey within a bank where the author is employed, and the
target audience consists of four groups of participants:

• Software developers - people with Java/Python knowledge (requirements for the
position often include JUnit knowledge and familiarity with other testing con-
cepts)

• Manual testers - People who should have a good overall knowledge of some of
the banking systems and are familiar with working on test plans and scenarios

• End users - customer managers and bank tellers. People with no programming
experience working with the product on a daily basis.

• Stakeholders - product owners, product support managers, team managers. De-
pending on the background, they may or may not have programming or testing

15

4.2 Survey 16

experience; however, it is their formal duty and responsibility to ensure that prod-
ucts are working up to specifications

Further preconditions for the survey are:

• Limited time and budget - expensive technologies such as eye-tracking cameras
were unavailable

• Distributed teams across several countries, located in various cities and buildings

• Security measures requiring risk assessment and approvals for any new service or
software executed internally

• Only a number of whitelisted websites are allowed for internal usage

4.2 Survey

As per Geisen and Bergstrom [2017]: "No questionnaire can be regarded as ideal for
soliciting all the information deemed necessary for a study. . . . The researcher must
use experience and professional judgment in constructing a series of questions that
maximizes the advantages and minimizes the potential drawbacks". From the authors’
experience, every test suite requires some context for understanding. While reading
through test case specifications, it is best to interact with the target system in some safe
(e.g., testing or staging) environment for better understanding. Sometimes one may
want to manually repeat some steps (if possible) or sometimes merely remembering
how the system looks like is enough.

To give all participants an equal chance for understanding test specifications, we
should provide them access to the system we test. For this survey, we create a mockup
for a real-life system, that would allow participants to interact with it as much as they
would want to. Functionality of this system is described in section 4.3. Constructing
our sample system has further advantages for this survey: we provide every participant
a new system they have not yet worked with before; having a sample system allows us
to validate test implementations; and lastly, even though this survey was approved by
authors’ manager, creating a sample system just for the research reduces legal risks of
breaching an NDA, and requires less work for final approval for the publishing of this
work.

4.3 Sample system 17

Having a sample system in place, we can start with the survey implementation.
With limitations from 4.1, the best form for our survey is in an online, web-based
format - that way, we will be able to distribute questionnaires among colleagues from
all the cities fast and without the need for an author to travel anywhere.

The survey is structured in the following way: a participant is asked to analyze
several test case specifications and answer questions related to the understanding of
target system features. We follow the advice of Rea and Parker [2014] "potential
respondents are more likely to participate when they perceive that the study’s findings
will directly impact their well-being" by telling participants that the outcome of this
survey is important for their work. Motivation is simple: if we find the best framework
for their work, the job should get more comfortable.

There are 3 test specifications for the survey, implemented in all three frameworks.
There are three tasks in the survey - to analyze each specification and answer probe
questions or perform certain steps on a sample system. Questions are listed in table 4.1.

4.3 Sample system

We create a sample system that was imitating work with term sheets for the survey.
Term sheets are used for managing and negotiating non-binding agreements with bank
customers and for contract preparations. The author created a site that allows users to
view a list of offered term sheets grouped by products offered to one or several parties.
A user can add a new product, add new term sheets for any product, change agreed
contract limits for a term sheet, and adjust risk class for parties.

This functionality mimics a slice of real-world banking applications. However, it is
not connected to any real system and only used fake data to avoid any possible legal
breaches.

4.4 Test implementations

Here we should briefly overview how we wrote test specifications for each framework
and why we choose this way. Full listings of code are in Appendix B.

4.4 Test implementations 18

Table 4.1: Survey questions and expected answers

Question ID Question Expected answer
age What is your age? Radio button for one of the age groups
experience How many years have you worked in a bank? Working experience in a bank

role
Regarding products and specifications,
what describes your work the best way?

Radio button for one of the following:
Customer
Developer
Tester
Someone who defines test specifications
Test automator
Other

other Other (please specify) Other role
First test case with following actions is shown:
User opens term sheet nr. 155, clicks button "Edit term sheets", enters "1000" and saves changes;
It is explicitly verified that value "Change of limit" is changed and properly formatted.

termSheetOpened (1) Which term sheet will be opened? 155

tc1 (2)
Could you sum up in one sentence
what this test does? Should mention change of limit and validations

tc1rerunnable (3) Can you re-run this test and expect it to pass? Yes

tc1fix
If no - what would you change/suggest
developers to change to make this test repeatable? *blank

Second test case with following actions is shown:
Within same term sheet user presses "Edit Term Sheets" button,
adds new product and contract to it, tries to save changes;
It is verified that this won’t work and the user will see an error;
Then the user fills required fields and presses "Save" button again;
It is verified, that value "Change of limit" is changed and
properly formatted for a row from the first test case, modified and summary rows;

tc2validations (4) How many validations does this test have? 5

tc2checked (5) What is checked in this test?

Should mention following checks:
user sees error message
data is saved
3 rows contain proper values

tc2dependant (6)
Does this test rely on the success
of the previous test? Yes

tc2changed (7)
Can you sum up in a few sentences
what will be changed in the system
if we run this test?

New product and contract rows are created

Third test case with following actions is shown:
User opens term sheet nr. 0;
User clicks "Submit form" but sees an error;
User assesses risk class for all companies as "Low"
User clicks "Save changes" then "Submit form".

U ser is given a link to the term sheet and is asked to repeat those actions manually

tc3properly
Do you feel you were able to execute
this test properly? "Yes/No/Maybe"

tc3help
Would you need a help from colleague
(software engineer or domain expert)
to better understand what this test does?

"Yes/No/Other"

tc3other My answer -

tc3form (8) JSON was automatically validated
Are all rows correct?
Were risk classes assigned properly?
Were changes submitted?

satisfaction
How satisfied are you with the approach
that was used for test specifications? 1-10

acceptability

Would it be acceptable for you
to work with acceptance tests if they
were all defined the way you saw in
this survey?

"Yes/No"

feedback Do you have any more comments or suggestions? Free input

4.4 Test implementations 19

4.4.1 Supporting code

We create two helper Java classes for JUnit - FormPage and TermSheetRow encapsu-
lating logic for accessing page elements.

Cucumber specification cannot work without glue code in some programming
language. For this task, we construct a DSL which enables us to work with data rows
in the Term Sheet by their ordinal position and row type. In test we might access or
edit rows and their corresponding columns by specifying something like "Input <text
to input> in [first/second/third/last] [customer/product/contract] row ’column name’
column". We would also have to specify row type and rows number to create a child
row for a customer and product rows.

For the Robot framework, we take advantage of the framework support for variables.
We define keywords that return map objects describing row coordinates. Using those,
we can create new child rows or edit columns of the selected row while making a
tree-like structure of elements more transparent for the end-user. Furthermore, this
should minimize potential efforts for maintaining the testing codebase.

For all frameworks, supporting code is not shown for the participant: the focus is on
test cases and scenarios that we built on top of that.

4.4.2 First test specification

At first, we introduce participants to the framework they will analyze, so we will not
lead with complicated cases. In this scenario, the user opens a web page and changes
a limit for a first contract. We store a page that should be opened is stored in a global
variable in the Robot test, in a global static field for the JUnit test suite and defined it in
a Background section of the Cucumber feature file.

4.4.3 Second test specification

For this test, we take the most straightforward approach with the Cucumber framework,
as mentioned in 4.4.1. In the test, we take advantage of the fact that new entities
(product and contract rows) are added on top, right after their parent nodes, enabling
us to implement test scenarios without going into details of how the rows are related
to one another. We create a new product for the first company, and then we create a

4.4 Test implementations 20

new contract for the first product. This approach has several drawbacks - to understand,
which contracts for which products should get modified, a user might have to repeat
each step manually. Another problem is if the target system would be changed - for
example, by adding new rows at the bottom, right before parent’s next sibling node -
then all the tests would need to be rewritten. Such limitations can be acceptable if test
specifications are getting re-negotiated every time serious design changes occur or if we
know with some degree of certainty that the design of the system will not be changed.
Otherwise, updating large parts of test codebase will slow the development speed down.

As mentioned before, we use variables in the Robot Framework to manipulate
variables. Thus, test specifications are more resilient against changes, but it comes at
the price of needing extra lines of code for variable assignment. Reading the code also
gets more complicated, because now users have to wander with the eyes on the code
to find which variable was defined where. On the positive side, this code is easier to
manage in the long run - should table logic change, the developers would only need to
update the definition of a few keywords and not rewrite whole scenarios.

A test specification states that a user should try saving term sheet with incorrect
data at first, get a validation error, and then fix the data to have the term sheet saved.
Both Cucumber and Robot framework tests are split into two smaller parts - scenarios
and test cases - so that each part will follow the "Given - When - Then" structure.

The general recommended approach for clean Java code is to keep each method’s
size to the minimum and let each method do only one clearly stated purpose. Those
practices typically help and encourage software developers to create testable and
maintainable code. However, they stop working so well when we have to implement a
specific flow of actions dictated by an outside party. Surely it would still be possible
to separate test case somehow - by splitting it similarly as we did it with JUnit and
Cucumber, or by creating even smaller methods. However, even that would require to
solve several challenges, like "Can we construct a method that will create new products
and contract rows?", or "How should we pass newly created rows for other methods to
use - in some global fields, or by returning a map object or a data class?".

While all those questions could be solved, it is often a good idea to start with a
heads-on solution, and see where it leads. For JUnit tests, we define created FormPage

4.5 Preparation 21

and TermSheetRow classes to convert test specifications from human language into a
Java code "as is."

4.4.4 Third test specification

For the final test, we have a condition to update the risk classes of "all" the customers.
In Java, this is done by getting a list of rows and iterating over them. In the Robot
framework, we have a ":FOR" directive for loops as well.

For Cucumber, the closest we can get for cycles is a Scenario Outline (or Scenario
Template) keywords, that allow us to repeat one scenario several times with different
input parameters. This only works if all the parameters are known at the time of creating
a test. Since there is no information about what kind - or how many companies there
will be, we have to resort to creating a magic "set every risk class as <Low>" step, which
works in the same way as Java code in its glue code part.

4.4.5 Overview of specifications

Customer-faced implementation of specifications has 39 lines of code in Cucumber, 73
lines of code in Robot framework (from those seven lines are configuration or section
separation parts), and 61 lines of JUnit Java code (from those 10 have only annotations
or braces).

4.5 Preparation

The author created a web service using Java and Spring Framework. Service distin-
guishes users by assigning a random "session-id" HTTP cookie to each user. Users can
navigate to the sample system located on /memo URL path, or to the survey on /survey
path. Each user has his separate cache for Term Sheets - that way, each user can interact
with the sample system without affecting the work of others.

"Ease of use is especially important for self-administered surveys since there is
no interviewer present to explain how to use the survey. If the survey is too com-
plicated, people will simply not respond" [Geisen and Bergstrom, 2017]. We keep
that in mind and follow agile practices to perform tests more often, but in smaller
groups and shorter "fix issues - test - discover further issues" working cycles (as

4.6 Evaluation of answers 22

opposed to waterfall model). The survey website was tested in several iterations on
small focus groups. At first, only basic functionality and correctness of navigation
logic was tested. On the second step, various design layouts were tested. Among
others, there were tested vertical layout - test specification on top, questions are listed
below, horizontal layout - test specification on the left, questions on the right, as
well as several others. It was confirmed that usability testing participants were the
most comfortable with a vertical layout, which reduced risks of some missed ques-
tions, even though it might require some extra scrolling if some questions were too long.

During the survey, a participant is allowed to navigate back and forward. No
questions were marked as mandatory, and users were encouraged to skip the question
they could not - or would waste too much time understanding.

We log each user interaction within the survey. Upon completion of the ques-
tionnaire, all answers are written to another log. While constructing the survey, it
was unclear what kind of infrastructure the author would have, so the service has no
database and only log interactions in a text file.

Originally author intended to choose frameworks at random during the survey for
each question. However, early usability tests revealed that the participants find this
confusing, so in the remaining versions of a service, we start to choose the testing
framework at random whenever a survey begins to see the same framework during the
whole session.

In a final step of survey preparation, survey service was deployed to a local hoster’s
virtual private server. A security team reviewed and whitelisted the website for a dura-
tion of a survey - under the circumstances, it was safer and easier than trying to get an
approval for running a custom service on the internal network.

4.6 Evaluation of answers

A custom-made CLI utility in Kotlin programming language is used to evaluate answers.
This utility uploads logged responses to a MongoDB database and enabled evaluating
answers one by one. For the evaluation, we can mark "+" or "-" (meaning "correct" or
"wrong" and stored as 1 or 0 respectively), or add a text remark comment that should
have started with colon symbol. The order of answers was shuffled randomly each time

4.6 Evaluation of answers 23

Figure 4.1: Survey service state diagram for participant

IndexPage

Greet participant,
provide links to test system and survey

ThankYouPage

Survey

H

InitSurvey

Framework = random(3)
Question = 0

Question
SaveResponse

Log response in a logfile

NextPrevious

Over

"Save TermSheet table Nr. 0"

next / [Question <MAX_QUESTIONS]prev / [Question >0]

next / [Question >= MAX_QUESTIONS]

StartSurvey

4.7 Summary 24

the utility was started to prevent any bias from the evaluator’s side.

We also count all those who abandoned survey or skipped a question in a separate
group as seen on the following figures 5.3, 5.2 and 5.4.

4.7 Summary

In this chapter, we defined a list of questions for the participants. We decided to use
web format for conducting our survey, and selected technologies for the survey imple-
mentation. We implemented selected tests for all three frameworks, to present to the
participants. Finally, we created a utility and defined a method for evaluating user re-
sponses as impartially possible.

Chapter 5

Conducting an experiment

In this chapter, we will conduct a survey for several groups of participants and provide
overall results.

5.1 First survey

The first survey was organized within the authors’ team among the closest colleagues.

Despite usability testing preparations, the first real-world survey still yielded several
problems. In the original design of the survey website, pressing the "Previous" button
on the form resulted in discarding the participant’s currently entered data. Analysis of
logs showed that one of the participants wanted to check their previous answers and
went back to the first question upon reaching the final question. Since the survey does
not allow navigating to a specific page, the participant had to click "Next" several times.
This, supposedly, resulted in them paying no more attention, and the fact that the input
from the last question is lost was overlooked. This behavior was fixed by improving the
page navigation logic, as seen in the diagram 4.1.

Another problem with the initial survey was that it did not store unfinished ques-
tions, and I had to extract those answers from response logs manually.

As seen in Figure 5.1, participants were not equally distributed in all three groups
for this survey to draw any conclusions from it. Seven participants started the survey
with cucumber framework, two with Robots framework and two with plain Java
implementation, and six, one and two respectively completed it.

25

5.1 First survey 26

Figure 5.1: First survey: one team;
Results for (C)ucumber, (J)Unit, (R)obot Framework, for questions 1-8

While analyzing the results of a first survey, we can see that question 4 has a
higher number of wrong responses - five out of six responses are wrong. However, in
a follow-up question 5, we see three correct answers two incomplete, and only one is
wrong. This seems strange: in question 4, we ask "how many checks are there," in
question 5 - "what is checked." One could assume that the participant should either
passes or fails both questions. After all - if you understand that a line contains some
validation - you should be able to count it. However, it is not the case here.

Furthermore, unlike JUnit, both Cucumber and Robot frameworks encourage
implicit error checking with HTML report format. In Cucumber, a user can see each
line’s execution status as it is marked with either green, red, or gray color. The same
applies to a Robot framework. For JUnit, the source code of a test specification is not
a part of a report, and the only thing user gets is whether a whole test case has passed
or failed (with a stack trace). This difference could also lead to different interpretations
among survey participants.

5.2 Second survey 27

Finally, in JUnit, every "check" is defined with assertions and starts with the same
"assert" (-Equals/-NotEquals/-True/-False) method. Cucumber guidelines recommend
providing starting conditions with "Given," test steps with "When" and validations with
"Then" keywords. However, our study showed that some responders do not understand
the difference between "When" and "Then" steps. It might be the case that participants
counted those rows as validations: there are 7 "When" steps and 5 "Then" checks, and
some answers ranged from 9 to 12.

Unfortunately, even though the results of a first survey were analyzed, no overall dia-
gram was made. As a result, problems with Questions 4 and 5 were not discovered until
the completion of a second survey. Otherwise, the author would adjust those questions
to include more precise wording or potentially change those.

5.2 Second survey

The second survey was conducted for a broader audience. It was distributed among all
scrum masters of Swedbank, all those interested in the QA topic, and a few stakeholders
involved in maintaining services. The invitation text is in Appendix C. The invitation
letter also permitted forwarding it to any number of colleagues.

In total, 35 colleagues got past the first survey question.

From figures 5.2, 5.3 and 5.4 we see that participants with JUnit skipped the least
questions, while participants with Robot Framework skipped the most. Among those
who answered, most of the answers are correct. The only exception is questions 4 and
5 - for the reasons discussed in 5.1. If we exclude those questions, then there are a total
of three incorrect and six incomplete answers for both JUnit and Cucumber framework,
and four incorrect with ten incomplete answers for Robot framework.

Upon reviewing results, it became apparent that within the authors’ team, an under-
standing of what is a "test" matched authors’, and so a few imprecisions with question
wordings were overlooked. For example, in question 3, with the follow-up for a ques-
tion, the intended answer would be "Yes" and blank input field, respectively, since the
test might be restarted as many times as the user wants. However, a certain number of
participants observed that re-running this test a second time the way it is written will
not change the system. There are no checks in the beginning that the initial "Change of

5.2 Second survey 28

Figure 5.2: Second survey.
Results for JUnit

Figure 5.3: Second survey.
Results for Cucumber

limit" field is not "0", so the test will overwrite the same value. Depending on a system,
this might be a "silent failure" or a false positive for the system under tests. Answers
that noted this kind of failure were marked separately, and we can see the differences in
the table 5.1.

5.3 Summary 29

Figure 5.4: Second survey.
Results for Robot Framework

Table 5.1: Different understandings of test being re-runnable
in question 3

Framework Technically correct Noticed a flaw
JUnit 1 3
Cucumber 5 2
Robot 4 1

5.3 Summary

In this chapter, we discussed the initial findings of our experiment. Raw results of
the survey may be found in the data archive attachment for this work or in a project
repository. A more detailed qualitative analysis for the second survey will be provided
in the next chapter.

Chapter 6

Evaluation

In this chapter, we will go into more detail and analyze the results of a second survey,
conducted on the whole organization and draw conclusions from our research.

6.1 JUnit

Among all three frameworks, JUnit has the least skipped questions: with only one
exception, everyone who started the test finished it without skipping a single item.

In question 3, a single participant got distracted with a new feature of JUnit 5:
advised using a "new RepeatedTest annotation" - and missed the essence of a question
completely. It was asked whether the test would pass or fail after running several
times in a row, not if we have a means for re-running tests. For the remaining JUnit
respondents, three out of four colleagues noticed that test is flawed and may give
a false-positive result on a second run. This number is higher than with any other
framework - only two Cucumber and one Robot framework respondents could notice
the same issue on that question. One of the JUnit participants who noticed that even had
no prior programming experience: that participant chose a "customer with no interest
on how the tests are implemented" role, and repeated in the question that he or she has
no prior programming experience.

As discussed in a previous chapter, question 4 was answered correctly by all JUnit
participants. For question 5, we see worse results - there is only one entirely correct
response. The rest either gave a vague explanation ("check for adding product"), which
was marked as wrong and two more incomplete answers where both the participants

30

6.2 Cucumber 31

missed some parts of functionality.

For question 7, we have two wrong and three partly correct answers, and it can be
considered the worst result among other frameworks on that question. From specifica-
tion, this scenario should have tested the user’s ability to save a new product and contract
rows after correcting errors from a previous failed attempt. The whole test consists of
a chain of actions - the user creates new data, attempts to save it, receives validation
error, corrects those, and finally saves the data. To implement this scenario without
creating additional helper methods, we had to go against clean code practices from
Martin [2008] - and write the test case as one method. Judging from the answers, we
may conclude that the users found it difficult to track what changes did affect the system.

It is possible to rewrite the test case to be more readable - by introducing the setup
methods and moving parts of functionality to small, clearly named helper functions.
Nonetheless, this process would require a programmer’s mental effort since rewritten
code would deviate from the specifications in plain human language.

Finally, in a question 8 - where users were asked to manually perform actions
from the test specification, one participant (identified as a developer) didn’t correctly
assign all the requested risk classes, but still estimated his response as correct. Another
participant (defined as a test automation engineer) refused to perform the actions but
did acknowledge that it will be incorrect.

We skip questions 1 and 6 since there were no incorrect answers for JUnit and only
one vague response in question 2.

6.2 Cucumber

For the Cucumber framework, some participants skipped first, fifth, sixth, and seventh
questions - we have no way of confirming if it was the same person.

For question 2, two participants were too general in their responses and stated only
that the test is for "modification for existing contract" or "changing and saving limit." In
the next one, two manual testers observed that the test is flawed and that the data needs
to be restored, while the remaining five persons gave a technically correct answer.

6.3 Robot Framework 32

An example test case for questions 4 and 5 was split into two parts for Cucumber
example. From chart 5.3, we see that this caused difficulties for participants in
estimating the correct number of different validations. Only one person gave entirely
accurate and expected answers both in questions 4 and 5 - by counting "Then" lines and
then copying them to the answer field. Remaining participants estimated from one till
seven validations. Question 5 sheds some light on why it happened: two participants
who gave a higher answer regarded each test line as a validation of some sort. Their
expectation: if a user does some action, it should be implicitly checked that it was
actually performed. This expectation differs from JUnit answers, where respondents
only expected from assertions to check for something. Those participants that estimated
the amount of checks as one or two have counted the amount of Cucumber test scenarios.

For question 7, we have only one incomplete answer where a participant misunder-
stood the nature of the relation between rows. The remaining five answers are correct,
which is the best result for this question among all frameworks.

For the final question, two participants estimated their actions as incorrect and
marked that they would need help to understand better what a test case does. Another
participant abandoned the survey on this question, while the rest modified term sheet
appropriately and were confident in their answers.

6.3 Robot Framework

At first glance at the results of the Robot framework in 5.4, we see that it has the most
skipped responses.

Starting from question 1, we have two incorrect answers due to users not under-
standing how variables in Robot Framework work; in a second question, half of the
respondents gave only vague answers as to what the test does. As mentioned before,
only one answer addresses the technical flaw of the test case in question three.

By question 4, only five out of nine participants continue answering the survey. One
respondent answered as expected for both questions four and five. Out of remaining,
we have one response for question 4 says that there are only three checks, which is then
explained through the following question: a participant counted three final checks as

6.4 Feedback 33

one. The remaining responses either miss some parts of validation or simply skipped
question 5, leaving us no way to analyze the answer’s reasoning. For question 7, two
participants were still able to give a correct answer, which is better than JUnits’ similar
question.

The last question of a survey for the Robot Framework (to authors’ great shame)
revealed a problem with the code - Robot Framework specification did not include a
"click <Submit form> button" command despite what the author stated himself in a ta-
ble 4.1. This mistake invalidates this question; however, we can still try to draw some
conclusions from it. One more participant abandoned the survey on this question; three
participants haven’t done anything, weren’t sure about what they did, and marked that
they would probably need external help to understand test case more. Finally, two par-
ticipants did everything correctly (minus the form submission) and were confident in
their results. Even if we assume their answers as correct, Robot Framework will still
have the lowest score on that question.

6.4 Feedback

After the last questions, we asked participants to rate their satisfaction from working
with the chosen framework, whenever or not they would say that it’s acceptable to use
the framework they worked with inside Swedbank, and if they have any more feedback
of any kind.

Responses for their satisfaction are seen in the table 6.1. We can see that average
weights were 7, 5.8, and 5.6 for JUnit, Cucumber, and Robot Framework.

Three participants responded that Cucumber would be acceptable, and three - that it
would not. For JUnit, there were five responses for "acceptable" and Robot framework
- five "acceptable" to one "not acceptable."

Only 7 participants in total gave any feedback for the survey, and we will overview
every single response here.

A person who gave 1 for Robot Framework satisfaction appears to be very annoyed
at the end of the survey and comments on test specification being "written for the
machine" and "not understandable for a person who sees them for the first time." From

6.4 Feedback 34

the background, that person is an experienced developer, and looking at their results,
we see correct answers for most questions in the survey. Even though they could
understand everything, working with the Robot Framework was too annoying for them.

A person who evaluated 3 for satisfaction for Cucumber commented that a tester
would have to understand a system more to know "if a test is good or bad" and if "the
tests should be changed or complemented." They complained about implementation and
remarked that "a specific language that requires a FAQ to decipher is not ideal." Finally,
there was a complaint about the incorrect implementation of the test specifications for
the survey. From the other responses, we can see that this person is a manual tester who
also answered correctly for most of the questions, and even noticed test inaccuracy in
Question 3.

There is an "it would be acceptable [to use Robot Framework] but with some
onboarding and [more] practice" response from a manual tester, who rated satisfaction
from working with Robot framework at 4.

One test automation engineer/manual tester answered "no" for Cucumber ac-
ceptability but clarified that such format would be limiting for exploratory testing
while being acceptable for test automation. Given this clarification, we count their
"acceptability" answer a vote for "acceptable."

A developer who has to maintain quality of tests commented on a Robot Framework
that "it has a learning curve, but is a very human-like language on overall" and rated
their satisfaction at 6.

A QA engineer who awarded the Robot framework with an 8 commented that the
tests could be improved by inviting everyone on the team to contribute "with their
thoughts and feedback." It can uncover more issues in the earlier stages of development.

Finally, a customer with no programming experience graded the JUnit approach
at eight and commented on tests being understandable even for him. This person also
answered most of the questions correctly, noticed a problem with question 3, and
considered a user perspective in question 5.

6.4 Feedback 35

Table 6.1: Participants satisfaction

Framework Evaluation
JUnit 6 6 7 8 8
Cucumber 3 4 5 7 8 8
Robot 1 4 6 7 8 8

In conclusion we can see that the satisfaction of working with the JUnit approach
was, on average, rated as the highest among all other frameworks, with Cucumber
and Robot frameworks failing behind with a similar level of satisfaction. The Robot
framework’s lowest score was given by somebody who (apparently) was disappointed
with the framework. For Cucumber, the lowest score was from someone criticizing how
the survey went instead.

From the point of survey organization, we gained the most insights from questions
3, 4, and 5, where participants were invited to motivate their answers, or the questions
were linked to each other. Even without any formal request or demand from our side,
several participants went to a great length to explain their answers.

Questions 2 and 7, where we asked participants to re-phrase contents of a test
in their own words, provided useful metrics for comparing frameworks; however, it
presented challenges for assessment. If an answer contains almost everything except for
a line - can we consider it a correct one, or should it still be marked as partially correct?
Does it matter if an incomplete answer has more correctly mentioned items? Would we
get more reliable metrics if we could replace those questions with a larger quantity of
shorter multiple-choice questions?

While the first question was only a warm-up one, the sixth one held no value to us.
A user choosing between "yes" or "no" already has a 50% chance of getting a correct
answer. Without any follow-up question on reasoning or motivation, we can’t draw any
conclusions from it.

Finally, we gave users the possibility to edit a "live" demo system for the last
question. It gave users more interactivity during the survey but demanded an additional
development effort: to store the form after a survey and to validate it against a set
of checks. An aspect could be improved here: a term sheet was generated using a
random number generator, initialized with a number of a term sheet. That meant that

6.5 Summary 36

for different users, a term sheet form for the same number would look the same even
at a different time. However, the term sheet included java LocalDate fields generated
by adding random numbers to a LocalDate.now(). This resulted in no two saved forms
being the same and complicated validation logic.

6.5 Summary

In this chapter, we have analyzed the responses for the second survey.

Surprisingly enough, the JUnit framework has shown great overall results in terms
of participant satisfaction, the correctness of the answers, and the amount of skipped
questions, despite not being created with acceptance tests in mind in the first place. The
results related to a second test case could still be improved by refactoring a test case
and moving actions to smaller but well-named helper methods. Despite JUnit being
written in a Java programming language, colleagues with no programming experience
could understand what it is doing.

Cucumber framework has shown close results to JUnit, with some aspects being
better and some - worse. Some questions have shown us that users do not differentiate
between how "When" and "Then" steps should work, and treat every line of a test
specification as a validation of some sort. This expectation can help design shorter and
cleaner tests, but it can also be misleading in some cases - for example, if an action
"press every red button on a page" does nothing if there are no red buttons on a page,
the user could still expect it to fail instead.

The Robot Framework has shown the worst results, and most respondents were
skipping their questions. This could be explained by a length of a code: JUnit has
40 lines of code (excluding blank lines, annotations, class, and method declarations);
Cucumber has 30 lines of code (excluding empty lines and scenario descriptions);
Robot Framework 53 lines of code and each example required providing keywords
definitions, increasing the size of code on the page. Robot framework results could also
be improved by offering users an Excel file with implementation instead of an HTML
page - a more familiar environment could give us better results.

6.5 Summary 37

Robot Framework (along with Cucumber) has still shown better results in questions
5 and 7 - the ones where users’ understanding of a test case was tested the most. Then
again, more JUnit respondents have noticed a flaw of implementation in a first test case
for question 3, which was initially overlooked even by the author.

All in all, it seems like there are no significant differences between testing frame-
works. Each framework has its ways of writing a test; each framework has some ad-
vantages and disadvantages. Re-phrasing survey participants: to improve test suites’
quality, we need more collaboration within the team and all involved parties. This col-
laboration comes prior to the choice of a framework.

Chapter 7

Future work

Practical experiments at a larger scale revealed several technical issues with a survey
organization that could be improved.

Logging survey answers to a database instead of working with log files would
simplify service creation and validation of results. A standalone tool from 4.6 would be
unnecessary, if a service would have restricted administrator panel, allowing organizers
to evaluate responses while the survey is still ongoing. We could do a survey for a
more quantitative approach, containing only "select an option" variants with automatic
validation. This way, a survey could become even more interactive for users.

Another problem with this survey was that it attempted mimicking real-life working
conditions by presenting participants with extensive test cases (inspired by examples
from authors’ practice) and a series of questions, spanning the whole test case. This
approach allowed us to test various ideas for question format, like free text inputs,
"select one"-questions and interactive forms in demo systems, and see how those types
of questions work. However, that format could stress the respondents and cause some to
skip questions or abandon the survey altogether. A small number of questions covering
complex topics presented challenges for evaluation as well. For the following studies
and improved reliability, it would be better to prepare a survey with a larger number of
more refined questions of the same format.

A frontend of a survey service could also be improved. The latest survey server
access logs revealed that several users were submitting duplicating answers for the
same question repeatedly. Users were probably annoyed by server response delays,
which we could avoid if there were a better indication that the next question is loading.
Another possible fix would be preloading all survey questions and test specifications at

38

39

the start of a survey on the client-side. That way, we would enable users to navigate
between questions without waiting for a server response.

Fixing those issues could improve the survey’s accuracy and reliability. We could
potentially improve user engagement and get a higher response rate, but there is no way
to confirm that for this study. With future research, it would be possible.

There are also several potential research topics for each framework. For JUnit, we
could study how well acceptance tests can be decomposed and refactored in a "clean
code" way, while still being understood by people with no technical background. For
Cucumber framework, we could focus on user expectations while working with DSL
and if there is a way to assure that those expectations will be met. For the Robot frame-
work, we could experiment with different test specifications file formats. Could we
have improved engagement results by using Excel spreadsheet instead of TSV-file for
test specifications, while mowing keyword definitions away from the file?

Chapter 8

Conclusion

The purpose of this study was to evaluate the usability of popular acceptance testing
frameworks within one large enterprise organization.

We addressed the challenges of distributed teams and office branches by creating
a custom online survey service and demo system, which served us well in this work
context. The survey reached colleagues from several cities and countries. On top of the
survey responses, we received constructive feedback from multiple participants. No
participants were bound by any time restrictions and were free to advance through the
question without being distracted from their regular work. We can also safely assume
that it would have taken way more effort, approvals, and budget, for an author to
travel across several HQs in different countries to interview representatives from every
country.

In the scope of this survey, participants were less engaged while working with the
Robot Framework than with Cucumber and JUnit frameworks. Cucumber and Robot
framework showed the same overall number of incorrect responses - nine, compared to
only four in JUnit. However, in several comprehension questions, participants working
with Cucumber and Robot Framework were able to give more precise answers than
with JUnit. Hence, we may conclude that a framework’s choice plays little role in the
usability of tests.

This survey has also demonstrated that even people with no prior programming
experience can understand clearly structured JUnit based Java test cases. At the
same time, experienced developers can work with test specifications from previously

40

41

unfamiliar "user-friendly" tools even if they personally do not like them.

Summarizing the above, we say that the usability of a mentioned acceptance testing
frameworks should not be an issue while choosing a tool to use. Nevertheless, this work
has reviewed the current state of acceptance testing frameworks and revealed several
potentially important research topics that could be the subject of further, more profound
research.

Bibliography

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, USA, 1 edition, 2008. ISBN 0132350882. 2, 11, 31

JUnit. Junit - about. https://junit.org/junit4/, 2018. URL https://

junit.org/junit4/. [Online; Accessed 11-June-2019]. 3

Cucumber. Cucumber reference. https://cucumber.io/docs/cucumber/api/, 2019. URL
https://cucumber.io/docs/cucumber/api/. [Online; Accessed 11-
June-2019]. 3

Robot Framework Foundation. Robot framework. https://robotframework.

org/, June 2019. URL https://robotframework.org/. [Online; Accessed
11-June-2019]. 3

Sebastian Möller. Quality Engineering. Springer, 2010. Chapter 2. 6

Kent Beck. JUnit Pocket Guide. O’Reilly Media, Inc., 2004. Accessed online. 9, 10

Dependency Finder. Junit - api change history, jul 2020. URL https://depfind.

sourceforge.io/Samples/junit.html#4.1. [Online; Accessed 19-July-
2020]. 10

Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional,
2002. Chapter 24. 10

Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in Action, Sec-

ond Edition. Manning Publications Co., USA, 2nd edition, 2010. ISBN 1935182021.
10

Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. Unit testing performance in
java projects: Are we there yet? In Proceedings of the 8th ACM/SPEC on Interna-

tional Conference on Performance Engineering, ICPE 17, pages 401–412. Associa-
tion for Computing Machinery, 2017. ISBN 9781450344043. 11, 13

I

https://junit.org/junit4/
https://junit.org/junit4/
https://junit.org/junit4/
https://cucumber.io/docs/cucumber/api/
https://robotframework.org/
https://robotframework.org/
https://robotframework.org/
https://depfind.sourceforge.io/Samples/junit.html#4.1
https://depfind.sourceforge.io/Samples/junit.html#4.1

BIBLIOGRAPHY II

J. Brunet, D. Serey, and J. Figueiredo. Structural conformance checking with design
tests: An evaluation of usability and scalability. In 2011 27th IEEE International

Conference on Software Maintenance (ICSM), pages 143–152, 2011. 11

Chris Stevenson. Testdox, 2003. URL http://agiledox.sourceforge.net/.
11

Dan North. Introducing bdd, mar 2006. URL https://dannorth.net/

introducing-bdd/. 11

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004. 12

Aslak Hellesoy, Matt Wynne, and Seb Rose. The Cucumber for Java Book. Pragmatic
Bookshelf, 2015. 12

Ana Oliveira Bertholdo, Dos Santos, and Fabio Kon. Applying usability and user expe-
rience goals in agile software development. 01 2011. 12

Pekka Klärck. Data-driven and keyword-driven test automation frameworks. Master’s
thesis, HELSINKI UNIVERSITY OF TECHNOLOGY, feb 2006. 13

Mark Fewster Dorothy Graham. Software Test Automation. Addison-Wesley, 1999. 13

Pekka Klärck. Experience, 2020. URL http://eliga.fi/experience.html.
13

PyPi. robotframework pypi, 2008. URL https://pypi.org/project/

robotframework/2.0/#history. 13

Charles Roscoe Lewis. Using the thinking aloud method in cognitive interface design.
1982. 13

Steven Clarke. Describing and measuring api usability with the cognitive dimensions.
01 2006. 13

Emily Geisen and Jennifer Romano Bergstrom. Usability Testing for Survey Research.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2017. ISBN
0128036567. 16, 21

Louis M. Rea and Richard A. Parker. Designing and Conducting Survey Research: A

Comprehensive Guide, 4th Edition. Jossey-Bass, 4th edition, 2014. 17

http://agiledox.sourceforge.net/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
http://eliga.fi/experience.html
https://pypi.org/project/robotframework/2.0/#history
https://pypi.org/project/robotframework/2.0/#history

Appendices

III

IV

Appendices

A Choice of literature

Author chose several academic research articles and papers to establish a language
framework and reference fundamental concepts and methods for this work. Those
articles were found by using Google Scholar service or in the university library of TU
Berlin.

Furthermore, this work references several peer-reviewed or widely known books
from well-trusted publishers. Those books were accessed with the OŔeily Learning
platform in an electronic format, which prevents author from sourcing an exact page,
and forces citing and referencing by chapter name or number. Those books were
used to learn more about specific topics by getting a historical context, or by trusting
interpretation of various research papers by book authors.

Finally, some online sources were referenced to provide an example of actual docu-
mentation or API changelogs. Those sources serve a mostly illustrative purpose.

B Source Code

JUnitTest.java

Test specifications are provided in normal java test cases, annotated with corresponding
Order tag. Global constants are defined in lines 2, 3 and 4. Helper classes and methods
were not provided to the survey participants.

1 public class TermSheetTest {

2 private static Integer formId = 155;

3 private static final Integer FIRST = 0;

4 private static final Integer SECOND = 1;

5

6 @Test @Order(1)

7 @DisplayName("Test Case 1: Modify limit for existing contract")

8 public void userCanEdit() {

9 FormPage formPage = new FormPage(formId);

10 formPage.open();

11

12 formPage.editButton().click();

13

14 TermSheetRow firstContract = formPage.rowOfType(RowType.CONTRACT_ROW, FIRST);

15

16 firstContract.editThisRow();

17 firstContract.setChangeOfLimit(1000);

V

18

19 formPage.saveChangesButton().click();

20

21 assertThat("Changes should be saved", formPage.changesSaved(), equalTo(true))'
;

22

23 assertThat("Should contain valid change of limit for the first product",

24 formPage.rowOfType(RowType.PRODUCT_ROW, FIRST).getChangeOfLimit(), '
equalTo("1,000.00"));

25 }

26

27 @Test @Order(2)

28 @DisplayName("Test Case 2: Add new contract")

29 public void userCanCreateNewContract() {

30 FormPage formPage = new FormPage(formId);

31 formPage.open();

32

33 formPage.editButton().click();

34

35 TermSheetRow mainCompany = formPage.rowOfType(RowType.COMPANY_ROW, FIRST);

36

37 TermSheetRow productRow = mainCompany.newChildrenRow();

38 productRow.selectProduct("Corporate small loan");

39

40 TermSheetRow contractRow = productRow.newChildrenRow();

41 contractRow.setChangeOfLimit(500);

42 contractRow.setContractId("11-222222-AA");

43

44 formPage.saveChangesButton().click();

45

46 assertThat("Must contain ’maturity date is not provided’ error", formPage.'
errorMessage(),

47 containsString("maturity date is not provided"));

48

49 contractRow.setMaturityDate("08-2022");

50 productRow.setMaturityDate("08-2022");

51

52 formPage.saveChangesButton().click();

53

54 assertThat("Changes should be saved", formPage.changesSaved(), equalTo(true))'
;

55

56 assertThat("Should contain newly changed limit",

57 formPage.rowOfType(RowType.PRODUCT_ROW, FIRST).getChangeOfLimit(), '
equalTo("500.00"));

58

59 assertThat("Should retain change of limit from the first test",

60 formPage.rowOfType(RowType.PRODUCT_ROW, SECOND).getChangeOfLimit(), '
equalTo("1,000.00"));

61

62 TermSheetRow summaryRow = formPage.rowOfType(RowType.SUMMARY_ROW, SECOND);

63 assertThat("Should have change of limit from the both tests", summaryRow.'
getChangeOfLimit(),

64 equalTo("1,500.00"));

65 }

VI

66

67 @Test

68 @Order(3)

69 @DisplayName("Test Case 3: Assess risk for all companies and submit form")

70 public void userCanSubmitForm() {

71 FormPage formPage = new FormPage(0);

72 formPage.open();

73

74 formPage.submitFormButton().click();

75

76 assertThat("Not all risks are assessed error", formPage.errorMessage(),

77 containsString("You must assign all risk classes for product rows"));

78

79 formPage.assesRiskButton().click();

80

81 formPage.companyRows().forEach(row -> row.setRiskClass("Low"));

82

83 formPage.saveChangesButton().click();

84

85 formPage.submitFormButton().click();

86 assertThat("Changes should be saved", formPage.changesSaved(), equalTo(true))'
;

87 }

88

89 }

CucumberTest.feature

Line 3 uses custom keyword to define a global constant "form page". First test
specification is described in lines 6 to 13. Second test specification is split into two sce-
narios and is described in lines 16 to 32. Final test specification is listed in lines 35 to 43.

For Cucumber tests, Java Gluecode is defined separately and was not presented to
the survey participants.

1 Feature: Test Term Sheet Form page

2 Background:

3 Given <form page> is 155

4

5 @Test Case 1

6 Scenario: Modify limit for existing contract

7 Given open Term Sheet Form for <form page>

8 And click "Edit Term Sheets"

9 When edit first contract row

10 And input <1000> in first contract row "Change of Limit" column

11 And click "Save Changes"

12 Then changes should be saved

13 And "Change of Limit" in first contract row is <1,000.00>

14

15 @Test Case 2

16 Scenario: Add new contract: getting error

VII

17 Given open Term Sheet Form for <form page>

18 And click "Edit Term Sheets"

19 When add <Corporate small loan> product for first company

20 And add <11-222222-AA> contract for first product

21 And set "Change of Limit" to <500> in first contract

22 But click "Save Changes"

23 Then should get error message containing <maturity date is not provided>

24

25 Scenario: Add new contract: fix error

26 When set "Maturity" to <08-2022> in first contract

27 And set "Maturity" to <08-2022> in first product

28 And click "Save Changes"

29 Then changes should be saved

30 And "Change of Limit" in first product row is <500.00>

31 And "Change of Limit" in second product row is <1,000.00>

32 And "Change of Limit" in summary row is <1,500.00>

33

34 @Test Case 3

35 Scenario: Assess risk for all companies and submit form

36 Given open Term Sheet Form for <0>

37 When click "Submit form"

38 Then should get error message containing <You must assign all risk classes for '
product rows>

39 When click "Assess risk classes"

40 And set every risk class as <Low>

41 And click "Save Changes"

42 And click "Submit form"

43 Then changes should be saved

RobotTests.robot

Lines 1 to 5 provide global configuration. Line 8 defines a global variable. First test
specification is described in lines 12 to 23. Second test specification is split into two
test cases and is described in lines 26 to 54. Final test specification is listed in lines 57
to 70. Custom keywords are defined after a line 71.

Only relevant keywords were presented to the survey participant under each test
specification. More basic keywords were defined in additional resoruce file helper-
methods.robot, those contents were not shown to the participants.

1 {*** Settings ***
2 Documentation Suite for testing term sheet functionality

3 ...

4 Resource helper-methods.robot

5 Test Teardown Close Browser

6

7 *** Variables ***
8 ${FORM ID} 155

9

10

VIII

11 *** Test Cases ***
12 Edit Existing Contract

13 Open Term Sheet Form ${FORM ID}

14 Click "Edit Term Sheets"

15

16 ${FIRST CONTRACT} = Get Contract Row first

17 Edit ${FIRST CONTRACT} "Change of Limit" 1000

18

19 Click "Save Changes"

20 Check Changes Were Saved

21

22 ${FIRST PRODUCT} = Get Product Row first

23 Check Column ${FIRST PRODUCT} "Change of Limit" "1,000.00"

24

25

26 Add new product and contract and get error

27 Open Term Sheet Form 155

28 Click "Edit Term Sheets"

29

30 ${MAIN COMPANY} = Get Company Row first

31 ${PRODUCT ROW} = Create Child Row ${MAIN COMPANY}

32 ${CONTRACT ROW} = Create Child Row ${PRODUCT ROW}

33

34 Edit ${CONTRACT ROW} "Change of Limit" 500

35 Edit ${CONTRACT ROW} "-" 11-222222-AA

36 Edit ${PRODUCT ROW} "-" Corporate small loan

37

38 Click "Save Changes"

39 Displays Error "maturity date is not provided"

40

41 Add new product and contract and get error

42 Edit ${CONTRACT ROW} "Maturity" "08-2022"

43 Edit ${PRODUCT ROW} "Maturity" "08-2022"

44

45 Click "Save Changes"

46 Check Changes Were Saved

47

48 ${NEW PRODUCT ROW} = Get Product Row first

49 ${OLD PRODUCT ROW} = Get Product Row second

50 ${SUMMARY ROW} = Get Summary Row

51

52 Check Column ${NEW PRODUCT ROW} "Change of Limit" "500.00"

53 Check Column ${OLD PRODUCT ROW} "Change of Limit" "1,000.00"

54 Check Column ${SUMMARY ROW} "Change of Limit" "1,500.00"

55

56

57 Submit Form

58 Open Term Sheet Form 0

59

60 Click "Submit form"

61 Displays Error "You must assign all risk classes for product rows"

62

63 Click "Assess risk classes"

64

65 :FOR ${COMPANY ROW} IN All Company Rows

IX

66 \ Set Risk Class ${COMPANY ROW} "Low"

67

68 Click "Save Changes"

69 Check Changes Were Saved

70

71 *** Keywords ***
72 Check Column

73 [Arguments] ${row} ${column} ${expected value}

74 ${actual value} = Find Column ${row} ${column}

75 Value Equals ${expected value} ${actual value}

76

77 Create Child Row

78 [Arguments] ${row}

79 Click In ${row} "+"

80 [Return] Next Sibling Row ${row}

81

82 Displays Error

83 [Arguments] ${expectedError}

84 ${error} = Page Error Message

85 Should Contain ${expectedError} ${error}

86

87 Edit

88 [Arguments] ${row} ${column} ${value}

89 Click In ${row} "+"

90 Input In ${row} ${column} ${value}

91

92 Open Term Sheet Form

93 [Arguments] ${FORM ID}

94 Open Browser To Page memo/${FORM ID}

95

96 Set Risk Class

97 [Arguments] ${row} ${value}

98 ${dropdown} = Dropdown In ${row}

99 Select Value In ${dropdown} ${value}

X

C Information for participants

Invitation letter

Hi colleagues,

I am working on my bachelor thesis, and I would ask for your help by
participating in a survey for it.

You can find the survey by following this external link. On that website,
you will also find a demo system (which is not related to any real existing
banking system and was only built with common terminology you can find
on Investopedia). You can try getting familiar with it or start straight away
with the survey.

During the survey, you will be asked to analyze test specifications for that
system and answer a few related questions. This survey is for everyone, and
it is not intended to test programming knowledge. The point is to research
whether or not any interested person can understand what the tests are about.
Ideally, both business and technical people should understand those and
work together if needed. So, if you cannot answer any question within a
few minutes at most, or if you do not want to answer any more questions -
it is ok to skip them.

Feel free to contact me if there are any problems with the survey. You are
also free to forward this survey to anyone who might be interested - the
more participants - the better.

Many thanks in advance,

Introduction text

This text was displayed at the beginning of the survey.

This is a survey for the bachelor thesis of Anton Bardishev. I am conducting
this survey to assess and compare the advantages and drawbacks of different
approaches to automation of acceptance tests. Acceptance tests in software
development are a form of tests aimed at verifying that the tested system is
fulfilling specifications. This survey may help us with finding an approach
that would allow organizing acceptance tests in a manner that is understand-
able for everyone and can be easily maintained by developers.

XI

For this survey you will have a a demo system for managing term sheets. A
link to this system will be available during the survey as well. This demo
system was designed for this survey only, does not affect the real world,
and is not connected to anything. You are free to interact with the system as
much as you want, and it will not break anything.

The system allows users to view a term sheet form. One term sheet form
may have info records for one or several customers. Each customer may
have a list of products that they use. Each product may store records for
several contracts. Within the form, a user may add new products or contract
rows. The user also has to assess risk classes (Low, Medium, High) for each
customer. After assigning all risk classes, the user may choose to submit
the form. After submission term sheet form will be locked from any future
modifications. You may also open FAQ at any time to get more information
on demo system.

During the survey, you will be presented with several acceptance tests im-
plemented in one of the researched frameworks. You will get asked to ana-
lyze the content of the test and answer the related questions.

Before we start, I also want to tell you that you cannot make a mistake or
do anything wrong here. Difficulties you may run into are reflecting the
problems of the selected approach for test specification, not your skills or
abilities.

By proceeding, you agree with this site using an anonymous cookie to iden-
tify you during the survey. The survey itself stores no personal information,
and once you complete it, any identifying information will be removed from
the dataset. If you disagree with cookies policy or do not want to proceed
- you can remove cookies from this website and leave it by following this
link

	 Contents
	 Erklärung der Urheberschaft
	 List of Figures
	 List of Tables
	1 Introduction
	2 Background
	2.1 Terms and definitions
	2.2 IEEE 29119-2
	2.3 Quality Engineering
	2.4 Summary

	3 Related work
	3.1 Brief history of unit testing
	3.2 Behavior Driven Development (BDD)
	3.3 Robot Framework
	3.4 Usability research
	3.5 Summary

	4 Methods
	4.1 Preconditions for a survey
	4.2 Survey
	4.3 Sample system
	4.4 Test implementations
	4.4.1 Supporting code
	4.4.2 First test specification
	4.4.3 Second test specification
	4.4.4 Third test specification
	4.4.5 Overview of specifications

	4.5 Preparation
	4.6 Evaluation of answers
	4.7 Summary

	5 Conducting an experiment
	5.1 First survey
	5.2 Second survey
	5.3 Summary

	6 Evaluation
	6.1 JUnit
	6.2 Cucumber
	6.3 Robot Framework
	6.4 Feedback
	6.5 Summary

	7 Future work
	8 Conclusion
	 Bibliography
	Appendices
	A Choice of literature
	B Source Code
	C Information for participants

